Whole Genome Mapping and Re-Organization of the Nuclear and Mitochondrial Genomes of Babesia microti Isolates

نویسندگان

  • Emmanuel Cornillot
  • Amina Dassouli
  • Aprajita Garg
  • Niseema Pachikara
  • Sylvie Randazzo
  • Delphine Depoix
  • Bernard Carcy
  • Stéphane Delbecq
  • Roger Frutos
  • Joana C. Silva
  • Richard Sutton
  • Peter J. Krause
  • Choukri Ben Mamoun
چکیده

Babesia microti is the primary causative agent of human babesiosis, an emerging pathogen that causes a malaria-like illness with possible fatal outcome in immunocompromised patients. The genome sequence of the B. microti R1 strain was reported in 2012 and revealed a distinct evolutionary path for this pathogen relative to that of other apicomplexa. Lacking from the first genome assembly and initial molecular analyses was information about the terminal ends of each chromosome, and both the exact number of chromosomes in the nuclear genome and the organization of the mitochondrial genome remained ambiguous. We have now performed various molecular analyses to characterize the nuclear and mitochondrial genomes of the B. microti R1 and Gray strains and generated high-resolution Whole Genome maps. These analyses show that the genome of B. microti consists of four nuclear chromosomes and a linear mitochondrial genome present in four different structural types. Furthermore, Whole Genome mapping allowed resolution of the chromosomal ends, identification of areas of misassembly in the R1 genome, and genomic differences between the R1 and Gray strains, which occur primarily in the telomeric regions. These studies set the stage for a better understanding of the evolution and diversity of this important human pathogen.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequence and Annotation of the Apicoplast Genome of the Human Pathogen Babesia microti

The apicomplexan intraerythrocytic parasite Babesia microti is an emerging human pathogen and the primary cause of human babesiosis, a malaria-like illness endemic in the United States. The pathogen is transmitted to humans by the tick vector, Ixodes scapularis, and by transfusion of blood from asymptomatic B. microti-infected donors. Whereas the nuclear and mitochondrial genomes of this parasi...

متن کامل

Mitochondrial Genome Sequences and Structures Aid in the Resolution of Piroplasmida phylogeny

The taxonomy of the order Piroplasmida, which includes a number of clinically and economically relevant organisms, is a hotly debated topic amongst parasitologists. Three genera (Babesia, Theileria, and Cytauxzoon) are recognized based on parasite life cycle characteristics, but molecular phylogenetic analyses of 18S sequences have suggested the presence of five or more distinct Piroplasmida li...

متن کامل

Sequencing of the smallest Apicomplexan genome from the human pathogen Babesia microti†

We have sequenced the genome of the emerging human pathogen Babesia microti and compared it with that of other protozoa. B. microti has the smallest nuclear genome among all Apicomplexan parasites sequenced to date with three chromosomes encoding ∼3500 polypeptides, several of which are species specific. Genome-wide phylogenetic analyses indicate that B. microti is significantly distant from al...

متن کامل

Profile of Eight Prophage Sequences Present in the Genomes of Different Acinetobacter baumannii Strains

ABSTRACT           Background and Objective: Prophage sequences are major contributors to interstrain variations within the same bacterial species. Acinetobacter baumannii is a gram-negative bacterium that causes a wide range of nosocomial infections, especially in intensive care unit inpatients. Prophage sequences constitute a considerable proporti...

متن کامل

A Novel Genetic classification of SARS coronavirus-2 following whole nucleic acid and protein alignment of the isolated viruses

Background and aims: The end of 2019 has marked the year, which the human population encountered a novel virus; SARS-CoV-2 that causes a disease namely COVID-19. Here we focused on the genome and protein mutations and subsequently suggested a new classification of the SARS-CoV-2. Materials and Methods: Our study showed that some extra positions in the virus genome play a key role in the SARS-C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013